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Equations of State for Fused-Hard-Sphere Fluids 
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Analytical equations of state for fused-hard-sphere fluids are developed from a 
generalization of the Carnahan-Starling method for obtaining the equation of 
state of the hard-sphere fluid. The results are in good agreement with existing 
simulation data. 
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1. I N T R O D U C T I O N  

In perturbation theories of real fluids composed of spherical molecules, 
it is necessary to know an accurate analytical equation of state for the 
reference fluid, usually the hard-sphere fluid. The most widely-used 
equation of state for this fluid is the Carnahan-Starling (CS) equation [ 1 ], 
which combines simplicity and accuracy. 

For  real fluids composed of nonspherical molecules, it is convenient to 
use as a reference system a hard-body fluid with molecules of similar shape 
to those of the real fluid, if one wishes the perturbation expansion to 
converge rapidly [2] .  This requires knowledge of accurate analytical equa- 
tions of state for hard-body fluids. This can be achieved by means of a class 
of generalized approximants proposed recently [3, 4]. However, the CS 
method provides a simple way to obtain an accurate equation of state for 
the hard-sphere fluid and it is tempting to try to extend it to other hard- 
body fluids. 

Some attempts have been made to derive equations of state for these 
fluids similar to the CS equation for hard spheres [-5 7-]. In this paper we 
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first generalize the CS method and then apply it to obtain equations of 
state for fluids of fused hard spheres (FHS). These fluids seem suitable as 
reference systems in a perturbative treatment for many real fluids. 

2. G E N E R A L I Z A T I O N  OF THE C A R N A H A N - S T A R L I N G  M E T H O D  

In terms of the packing fraction y = pyre = 7~pa3/6, the virial expansion 
[8] of the compressibility factor Z = p  V / N k T  of the hard-sphere fluid can 
be expressed in the form 

Z = l + 4 y + 1 0 y 2 + t 8 . 3 6 4 8 y 3 + 2 8 . 2 2 4 5 1 2 y 4 + 3 9 . 8 3 3 6 y S +  . . .  (1) 

When the coefficients in this expansion are approached to their nearest 
integers, they can be obtained from the recurrence formula, 

B* = Bn/V~m - 1 = n 2 + n - 2 (2) 

for n/> 2. Thus, rewriting Eq. (1) in the form 

Z = ~  B * y n  
n ~ 2  

(3) 

with B* given by Eq. (2), the summations involved in this expression can 
be evaluated from the sum of the geometrical series and their derivatives. 
This leads to the well-known Carnahan-Starling equation [ 1 ]: 

1 + y + y 2 _ y 3  
Z -  (1 - -  y ) 3  (4) 

It is obvious from Eq. (1) that in approaching the virial coefficients 
to their nearest integers, none of them beyond the third is reproduced 
exactly by the recurrence formula, Eq. (2). This suggests the possibility of 
improving the method by obtaining expressions equivalent to Eq. (2) 
which exactly reproduce a certain number of the true virial coefficients, 
since the CS method does not necessarily require the virial coefficients to 
be integers. Then, postulating that the recursion formula thus obtained is 
valid for any value of n, substituting in Eq. (3), and adding the series, we 
obtain an equation of state of the form 

l + E ~ S l l a n y  n 
z- - -  (5) 

(1 _ y)k-1 

where k is the number of virial coefficients to be reproduced exactly. 
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However, when this is done, the resulting equations of state do not 
provide better agreement with the simulation data for either the stable [9] 
or the metastable [10] fluid regions than the CS equation, Eq. (4). This is 
because Eq. (2) reproduces the true virial coefficients above B3 sometimes 
by excess and sometimes by default. This leads to a fortunate cancellation 
of errors, which does not occur when we impose the condition that a 
greater number of virial coefficients must be exactly reproduced. 

It is to be expected that this modification of the CS method would be 
particularly appropriate when virial coefficients are small, in which case the 
approach to their nearest integers can involve considerable errors. To 
illustrate this, we consider in some detail the hard-disk fluid case. 

In terms of the packing fraction y = rcpa2/4, the known virial coefficients 
for the hard-disk fluid are [ 11 ] 

B 2 = 2, B3 = 3.128018, B 4 = 4.257854, B 5 = 5.336898, 
(6) 

B 6 = 6.36576 + 0.00768, 0 7 = 7.3472 + 0.0320 

By approximating these coefficients to their nearest integers, the compressi- 
bility factor Z can be expressed in the form 

Z = l + 2y + 3y2 + 4y3 + 5y4 + 6yS + 7y6 + . . .  (7) 

The coefficients in this expansion can be obtained from the recurrence 
formula 

B,,=n (8) 

and consequently, Eq. (7) can be put in the form 

Z = I +  ~ n y "  1 (9) 
n ~ 2  

Summation of this series, making use of the properties of the geometrical 
series, results in the expression 

1 
Z = ( l _ y ) ~  (101 

which can be considered [12] as the two-dimensional (D = 2) equivalent of 
the CS equation. 

Table I compares predictions for this equation with simulation data 
[13] for the hard-disk system. It can be seen that Eq. (10), as is to be 
expected, systematically underestimates simulation data since, in approxi- 
mating the virial coefficients, Eq. (6), to their nearest integers, these are 
always lower than the true virial coefficients beyond B3, in contrast to 
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Table I. Equation of State for 
is 
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a Hard-Disk Fluid (D = 2): Here, Obviously, the "Volume" 
a Surface and V0 = Na 2 ,,/3/2 

V/Vo Z~ m Z (I0) Z (12) 

30 1.064 1.063 1.063 
20 1.097 1.097 1.098 
10 1.211 1.209 1.211 
5 1.498 1.492 1.499 
3 2.077 2.054 2.078 
2 3.42 3.35 3.44 
1.8 4.17 4.06 4.19 
1.6 5.50 5.33 5.55 
1.5 6.61 6.40 6.70 
1.4 8.31 8.06 8.49 

what happens in three dimensions (D = 3). Thus, for D = 2 we can expect 
that the imposition of the condition that more virial coefficients be 
reproduced exactly will improve the quality of the resulting equation of state. 

Consequently, if we impose the condition that the third viriat 
coefficient must be reproduced exactly, we obtain 

B,,= 1.128018n-- 0.256035 (n>~2) (11) 

This expression furnishes B4=4.2560,  B 5 =  5.3841, B6=6.5121,  and 
B7=7.6401, which, in general, are much closer to the correct values 
(6) than those predicted by (8). Using expression (11) and adding the 
corresponding virial expansion, we obtain the equation of state 

1 +0.1280183:2 
Z -  (1 _ y ) 2  (12) 

which, as we can see in Table I, constitutes a noticeable improvement  with 
respect to Eq. (10). 

It is possible to reproduce exactly up to the fourth virial coefficient, by 
means of the expression 

B,, = 0.0009090n 2 + 1.123473n - 0.250582 (n >~ 2) ( 13 ) 

The values of Bs, B6, and B 7 remain virtually unchanged from those given 
by Eq. (11) and lead to the equation of state, 

1 - y + 0.128018y 2 - 0.126198y 3 
Z =  (1 _ y ) 3  (14) 

which provides results practically indistinguishable from those of Eq. (12). 
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Any attempt to increase the number of virial coefficients exactly 
reproduced results in progressive worsening of the equation of state. 

Thus, to some extent, the modified CS method can improve not only 
the predictions of the equation of state, but also those of the virial coef- 
ficients. We can go further and generalize the CS method to nonspherical 
hard-body fluids, for which the virial coefficients are function of the shape. 
In these circumstances the coefficients ai in Eq. (5) would be functions of 
a suitable shape-defining parameter, such as the shape factor ~ = RS/3vm, 
where R is the mean radius of curvature, S the surface of the molecule, and 
Vm the molecular volume. 

3. EQUATIONS OF STATE FOR FHS FLUIDS FROM THE 
GENERALIZED CS METHOD 

3.1. Hard Dumbbells 

Homonuclear dumbbells (HMND) are characterized by the bond 
length-to-diameter ratio L, whereas heteronuclear dumbbells (HTND) are 
defined by L and ~ ,  the bond length and minor diameter, both in terms 
of the major diameter aA (Fig. 1). However, we are interested in using a 
single parameter to define the shape of both types of molecules in order to 
obtain unified expressions for the virial coefficients and the equation of 
state. 

For hard convex body fluids, the dependency of the reduced second 
virial coefficient B* = B2/v m on the shape factor ~ is given exactly by 

B~' = 1 + 3~ (15) 

Hemonuclear dumbbell Heteronuclear dumbbell 

Linear symmetric triatomics 

Fig. 1. 

%=1 
I I 

Non-linear symmetric triatomics 

Several of the molecular shapes considered in the paper. 
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whereas for nonconvex hard-body fluids, such as FHS fluids, the second 
virial coefficients, determined exactly from theoretical methods, can be used 
to determine an effective shape factor by using Eq. (15). 

The known reduced virial coefficients B. -B./v m third to fifth, for 
both homonuclear dumbbells [14, 15] and heteronuclear dumbbells [15] 
are very well reproduced by means of the following polynomials in the 
shape factor e [3, 4]: 

B* = 0.24 + 6.74~ + 3.02e 2 

B~' = - 4 . 2 2  + 15.41e + 7.17a 2 (16) 

B* = 26.62 -- 36.41a + 38.01e 2 

These expressions reproduce to two decimal figures the hard-sphere fluid 
virial coefficients for e = 1, and from them we can obtain a recurrence 
formula similar to Eq. (2), which is now expressed as 

k 2 
B*.= (lV) 

i=O 

Then the summation given by Eq. (3) can be performed to give an 
expression similar to Eq. (5) with coefficients a,(~) depending on e. 

We have obtained equations of state of the form of Eq. (5), with 
a-dependent coefficients, reproducing exactly three, four, or five virial coef- 
ficients of H M N D  and H T N D  fluids as given by Eq. (16). The best results 
in comparison with simulation data [16-18]  are obtained on the condition 
that four virial coefficients must be reproduced, that is, k = 4 in Eqs. (5) 
and (17). The latter expression now becomes 

B* = fo(e) + A(~)n  + f~.(e) n z (18) 

with 

fo(~) = - 8.58 + 10.31e - 2.65e 2 

f l ( e )  = 8.49 - 8.585c~ + 0.195~ 2 

f2(~) = - 1.85 + 2.465e + 0.565e 2 

(19) 

which lead to the equation of state, 

1 q- a l (e  ) y § a2(~ ) y2 4- a3(~ ) y3 
Z - (20) 

( l - - y )  3 
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with 

a l ( ~ ) =  - 2 + 3 ,  

azOz) = 0.24 - 2.26, + 3.02~ 2 (21) 

a3(~ ) = - 2.94 + 4 . 1 9 ~ -  1.89~ 2 

As we can see in Figs. 2 and 3, agreement between calculated and simula- 
tion data is very good for both H M N D  and H T N D .  

From the recurrence formula, Eq. (18), combined with Eq. (19), the 
expression for the fifth virial coefficient is 

B* = - 12.38 + 29.01~ + 12.45~ 2 (22) 

This expression gives values of B* which differ from those given by the last 
one in Eq. (16) by only a few percent in the range of c~ in which we are 
interested (roughly 1 ~< ~ ~< 1.5). 

3.2. Symmetric Triatomics 

Linear symmetric triatomics (LST) are characterized by the parameters 
L and aA, where L is the distance between the centers of the central sphere 
and one of the two equal outer spheres denoted A, and aA is the diameter 
of the outer spheres, both expressed in terms of the diameter of the central 
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Equation of state for HMND. Continuous lines: Eqs. (20) and 
(21). Points: simulation data from Ref. 16. 
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Fig. 3. Equat ion of state for HTND.  Cont inuous  lines: Eqs. (20) and 
(21). Points: simulation data from Refs. 17 and 18. 

sphere. Nonlinear symmetric triatomics (NLST)  are defined by the param- 
eters L, cr A, and co, where L and a A have the same meaning as for LST and 
co is the valency angle (Fig. 1). 

The simulation data for the equation of state of LST and NLST are 
scarce. For  LST, to our knowledge, the only shape  for which there are 
simulation data for several densities is for L-aA = 0.8-1.0 [-19]. The corre- 
sponding reduced virial coefficients [15] are listed in Table II. From these 
we can apply the modified C S  method to obtain equations of state 
reproducing exactly three to five virial coefficients. The best results are 
obtained when four virial coefficients are reproduced. The recurrence 
formula for this case is 

B* = -- 4.734 + 0.3765n + 2.4405n 2 (23) 

For  the fifth virial coefficient, this expression gives B* = 58.16, somewhat 
higher than the value listed in Table II. 

Table II. Virial Coefficients for Symmetric Triatomics and Tetrahedral Penta-Atomics 
(See References in the Text) 

Fluid B* B* B* B~' 

LST (L-or a = 0.8-1~0) 5.781 18.36 35.82 53.5 
NLST ( L - a A - ~  = 0.8~).6-105 ) 6.069 20.91 44.66 642 
TPA (L-a  a = 0.8--1.0) 5.024 15.26 31.94 51.9 
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The resulting equation of state is then 

1 + 2.781y + 4.017y 2 - 2.917y 3 
Z -  (1 - y)3 (24) 

which, as we can see in Fig. 4, provides excellent agreement with simulation 
data [19]. 

For  NLST there is also, to our knowledge, a single shape for which 
there are simulation data for the equation of state at several densities, 
namely, for L-aA-~ = 0.8~0.6-105 [20]. The virial coefficients of this shape 
[15] are listed in Table II. Applying the modified CS method, we find 
that the best results as compared with simulation CS method, we find that 
the best results as compared with simulation data are also obtained when 
four virial coefficients are reproduced. The recurrence formula for the virial 
coefficients is then 

B* = 3.1140 - 7.4315n + 4.4545n 2 (25) 

which, for the fifth virial coefficient, gives 77.32, appreciably higher than 
that listed in Table II. 

The equation of state resulting from the summation of the series given 
by Eq. (3) with B* given by Eq. (25) is 

1 + 3.069y + 5.703y 2 - 0.863y 3 
Z -  (1 - y)3 (26) 

which, as Fig: 4 shows, agrees very well with simulation data [20]. 

16 f t i i 
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�9 L- GA- ~ = 0 . 8 - 0 . 6 -  105 
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8 ,,,,,; , 
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Y 

Fig. 4. Equations of state for LST, NLST, and TPA. Continuous line: 
Eq. (24). Dashed line: Eq. (26). Dashed-dotted line: Eq. (28). Points: 
simulation data from Refs. 19 (circles), 20 (squares), and 21 (triangles). 
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3.3. Tetrahedral Penta-Atomics  

Hard tetrahedral penta-atomics is a model consisting of a central 
sphere and four other equal-sized spheres placed at the vertices of a 
tetrahedron. The virial coefficients up to B* are known [15] for the shape 
defined by L-aA = 0.5206-1.0294, where L and aA have the same meaning 
as for LST. They are listed in Table II. F rom the application of the 
modified CS method, the best results as compared with the simulation data 
[21]  for the equation of state are obtained, in contrast  with the preceding 
cases, when the five virial coefficients are reproduced exactly. The recurrence 
formula is 

B* = 16.54000- 19.58467n + 7.96800n 2 -  0.52733n 3 (27) 

and the resulting equation of state, 

1 + 1.024y + 1.164y 2 - 2.956y 3 - 3.396y 4 
Z = (28) (I __y)4 

which, as we can see in Fig. 4, provides excellent agreement with simula- 
tion data. 

4. C O N C L U S I O N S  

From the above results, we may conclude that the generalization of 
the Carnahan-Star l ing method introduced in this work allows us to obtain 
in a fairly simple and systematic way accurate equations of state for fused- 
hard-sphere fluids. For  most  of the cases considered it is sufficient to know 
only four virial coefficients to obtain the equation of state since, except for 
TPA, the most accurate results are obtained under the condition that the 
first four virial coefficients must be reproduced exactly. However, this may 
be due to insufficient accuracy in the fifth virial coefficients given in the 

literature. 
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